If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-72=0
a = 1; b = 3; c = -72;
Δ = b2-4ac
Δ = 32-4·1·(-72)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{33}}{2*1}=\frac{-3-3\sqrt{33}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{33}}{2*1}=\frac{-3+3\sqrt{33}}{2} $
| 4x+6-2+3x=8 | | 2(4x-3.5)=4x+17 | | 7(2y+-1)=7 | | 2x-10=1x+9 | | 5x+4+2x-6x=6+6 | | 4.9x-2=3.9x-2 | | 235=-5(6k+1) | | 1-x=-2x-5 | | ((D^2+4D)^3)(y)=0 | | -5x+4=-6x+9 | | 4x+7+7x+2=180 | | 9x+15=27 | | 7(3m-7)=-112 | | 2x-1+9=-4 | | 5/6x+8=-1/6x | | 1/4x-1=5/4x | | (Y-6)-(y+6)=y7 | | 3(y=6)=9y | | 5x-(3x-10)-2=0 | | 3^(2x+5)=1 | | 3^(2x+5)=3^0 | | 17x-18=35 | | 1/2x+3=2=5-2x=7x | | x/6+x/9=180 | | 1(2.5x)=10 | | -225=6+7(6k+3) | | x2+3x+8x+24=0 | | 48+1/3x=3x | | 1^(3x+6)=1^2 | | 9x+6=17x-18=90 | | 7x+4=9x-11 | | (-3/5+5/3)+a=0 |